
Hussar 1.0 software manual

March 14, 2017

Contents

1 Introduction 2
1.1 License . 2
1.2 About Hussar . 2
1.3 Requirements . 3
1.4 Installation . 4
1.5 Citing . 4

2 List of examples 5
2.1 Tutorials . 5
2.2 Examples . 7
2.3 Tests . 9

3 Tutorials walk-through 11
3.1 NOPA example . 11
3.2 1D Propagation . 24

1

Chapter 1

Introduction

1.1 License

This software can be used for non-commercial, educational and scientific pur-
poses only.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

1.2 About Hussar

Hussar is an Object Oriented MATLAB library designed for pulse and contin-
uous wave beam nonlinear propagation.

Hussar uses an unidirectional pulse propagation equation (UPPE [1]):

∂zE = ikzE +
ω̃

2ε0c2kz
(iω̃P − j) (1.1)

approach, modified according to not-necessary slowly-varying envelope approach:

Ẽ(t, x, y, z) =
∑
j

Ãi(t, x, y, z)e
i(ωjt−kjzz)

2

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

or:
E(ω̃, kx, ky, z) =

∑
j

Ai(ω = ω̃ − ωj , kx, ky, z)e−ik
j
zz (1.2)

This modification does not involve additional approximations. It is used to in-
troduce distinction between physical beams e.g. pump, signal and idler in OPA
experiment or fundamental and second harmonic in SHG experiment. Addition-
ally this reduces memory requirements. The P (ω̃, kx, ky, z) and j(ω̃, kx, ky, z)
are the nonlinear part of the medium polarization and the free current, respec-
tively.

Upon the substitution 1.2, equation 1.1 decouples into N equations, where
N equals to number of envelopes. At the same time the P and j split into N
expressions for polarization and current oscillating at reference frequencies ωj .

For example in the case of second harmonic generation:

∂zAF = ikFz AF + i
deff ω̃F

2

c2kFz
F {A∗

FASH} ei∆kz

∂zASH = ikSHz ASH + i
deff ˜ωSH

2

2c2kSHz
F
{
A2
F

}
e−i∆kz

and sum frequency generation:

∂zA1 = ik1
zA1 + i

deff ω̃1
2

c2k1
z

F {A∗
2A3} ei∆kz

∂zA2 = ik2
zA2 + i

deff ω̃2
2

c2k2
z

F {A∗
1A3} ei∆kz

∂zA3 = ik3
zA3 + i

deff ω̃3
2

c2k3
z

F {A1A2} e−i∆kz

The information on dispersion diffraction and spatial walk-off is contained
in the wavevector z component matrix (for each set of ω̃, kx, and ky):

kz(ω̃, kx, ky) =

√(
ω̃ n(ω̃, kx, ky)

c

)2

− k2
x − k2

Y

this recursive equation is solved by Hussar iteratively, the refractive index is
calculated based on the Sellmeier equations.

1.3 Requirements

Hussar was tested with MATLAB R2014a and 2014b it should, however, work
with older versions which support classdef and “∼” function argument nota-
tion.

Hussar has been created for PC computers. 4GB RAM is enough for running
simulations with 3 envelopes (SFG/DFG/OPA etc.) and 4 million points in the
grid of each envelope (e.g grid of 128x128x256 points in 3D and 1024x4096
points in 2D simulation).

3

1.4 Installation

Hussar “.m” files come as a compressed archives. In order to use Hussar it is
enough to put it’s location into MATLAB’s path. Although this can be done
permanently, the recommended way is to use the “includeAll.m” script which
changes MATLAB’s path until MATLAB restart. This is useful especially when
a new version of Hussar is obtained or multiple versions of Hussar are kept on
a single computer.

To include Hussar into your MATLAB path run “includeAll.m” this can be
done automatically by your script through the “run” command:

run('PathToHussarDirectory/includeAll'); %% include Hussar

1.5 Citing

Please cite Hussar and its authors in any publication for which you found it
useful, thanks! The best publication to cite is:

T. M. Karda, M. Nejbauer, P. Wnuk, B. Resan, C. Radzewicz, and P. Wasylczyk,
”Full 3D modelling of pulse propagation enables efficient nonlinear frequency
conversion with low energy laser pulses in a single-element tripler,” Scientific
Reports 7, 42889 (2017).

4

Chapter 2

List of examples

The bast way to start using Hussar is through examples. Included are exam-
ples of OPA, NOPA, SHG, SFG, SRS, SPM, Supercontinuum generation in a
fiber and consecutive X-Frog measurement, SPIDER setup, linear effects (dou-
ble refraction). Additionally as a preview tests of components required for 3D
supercontinuum generation in bulk materials are provided. This includes Pho-
toionization according to Keldysh and multi-photon model and Drude model
for light interaction with free currents.

2.1 Tutorials

• Materials in Hussar - basic usage:

/Hussar-1.0/work/tutorial/T1_Materials.m

• Envelope creation and visualization:

/Hussar-1.0/work/tutorial/T2_Pulse.m

5

/Hussar-1.0/work/tutorial/T1_Materials.m
/Hussar-1.0/work/tutorial/T2_Pulse.m

• 3D pulse composition, shifting in space, spectral phase manipulation, se-
rialization, visualization.

/Hussar-1.0/work/tutorial/T3_Pulses.m

• SPM in 1D - simple propagation of big beam or in a fiber

/Hussar-1.0/work/tutorial/T4_Propagation.m

• SHG - simple 3D propagation

/Hussar-1.0/work/tutorial/T5_SHG_Movie.m

• NOPA tutorial

/Hussar-1.0/work/tutorial/T6_NOPA_PumpUV.m

6

/Hussar-1.0/work/tutorial/T3_Pulses.m
/Hussar-1.0/work/tutorial/T4_Propagation.m
/Hussar-1.0/work/tutorial/T5_SHG_Movie.m
/Hussar-1.0/work/tutorial/T6_NOPA_PumpUV.m

2.2 Examples

• fiber supercontinuum

/Hussar-1.0/work/example_FiberSupercontinuum_XFROG/FiberSupercontinuum_

XFROG.m

• OPA - various configurations of OPA setups

/Hussar-1.0/work/example_OPA/OPA_FirstStage.m

/Hussar-1.0/work/example_OPA/OPA_SecondStage.m

/Hussar-1.0/work/example_OPA/OPA2.m

7

/Hussar-1.0/work/example_FiberSupercontinuum_XFROG/FiberSupercontinuum_XFROG.m
/Hussar-1.0/work/example_FiberSupercontinuum_XFROG/FiberSupercontinuum_XFROG.m
/Hussar-1.0/work/example_OPA/OPA_FirstStage.m
/Hussar-1.0/work/example_OPA/OPA_SecondStage.m
/Hussar-1.0/work/example_OPA/OPA2.m

• NOPA

/Hussar-1.0/work/examples/NOPA_PumpUV1.m

/Hussar-1.0/work/examples/Movie_NOPA_PumpUV.m

• SRS, FSRS - Stimulated Raman Scattering with two long overlaping pulses
with shear

/Hussar-1.0/work/examples/SRS_TwoLongPulses.m

and overlaping short and long pulse (like in the femtosecond SRS experi-
ment)

/Hussar-1.0/work/examples/SRS_ShortAndLongPulse.m

8

/Hussar-1.0/work/examples/NOPA_PumpUV1.m
/Hussar-1.0/work/examples/Movie_NOPA_PumpUV.m
/Hussar-1.0/work/examples/SRS_TwoLongPulses.m
/Hussar-1.0/work/examples/SRS_ShortAndLongPulse.m

• SHG - second harmonic generation with tightly focused beam

/Hussar-1.0/work/examples/Movie_SHG.m

• THG - cascaded THG through consecutive SHG and SFG, the pulse delay
and overlaped is fixed by a set of birefringent crystals

/Hussar-1.0/work/examples/Movie_THG_BBO.m

• Linear effects - double refraction (walk-off) in BiBO crystal

/Hussar-1.0/work/examples/Movie_DoubleRefraction.m

• SPIDER example

/Hussar-1.0/work/examples/SPIDER.m

• XPM - cross-phase modulation between two overlaping pulses a short and
a long one

/Hussar-1.0/work/examples/XPM_LongAndShortPulse.m

2.3 Tests

• Material - calculation and visualization of electric field, displacement and
Poynting vectors for slow and fast optical rays (~Es, ~Ef , ~Ds, ~Df , ~Ps, ~Pf)
refractive index (ns, nf), walk-off, dispersion terms (vg, β2−β5) search for
phase-matching conditions.

9

/Hussar-1.0/work/examples/Movie_SHG.m
/Hussar-1.0/work/examples/Movie_THG_BBO.m
/Hussar-1.0/work/examples/Movie_DoubleRefraction.m
/Hussar-1.0/work/examples/SPIDER.m
/Hussar-1.0/work/examples/XPM_LongAndShortPulse.m

/Hussar-1.0/work/tests/testBiBO.m

• Multiphoton absorption

/Hussar-1.0/work/tests/testMPA.m

/Hussar-1.0/work/tests/testMPA_ThroughPICI.m

• Self-focusing

/Hussar-1.0/work/tests/testSelfFocusing.m

• third order dispersion

/Hussar-1.0/work/tests/testTOD.m

• Drude model of electric field – current interaction

/Hussar-1.0/work/tests/testDrude_ThroughPICI.m

• Third harmonic generation

/Hussar-1.0/work/tests/testTHG_Processes.m

10

/Hussar-1.0/work/tests/testBiBO.m
/Hussar-1.0/work/tests/testMPA.m
/Hussar-1.0/work/tests/testMPA_ThroughPICI.m
/Hussar-1.0/work/tests/testSelfFocusing.m
/Hussar-1.0/work/tests/testTOD.m
/Hussar-1.0/work/tests/testDrude_ThroughPICI.m
/Hussar-1.0/work/tests/testTHG_Processes.m

Chapter 3

Tutorials walk-through

3.1 NOPA example

In this tutorial a non-collinear optical parametric amplifier pumped with a UV
pulse will be simulated. The script is located in PathToHussarDirectory/

work/tutorial/T6_NOPA_PumpUV.m.
We begin by including Hussar:

%% include Hussar
run('../../includeAll');

the “includeAll.m” script is located in PathToHussarDirectory/ it is therefore
pointed by a relative path /../...

First the simulation’s grid and its physical dimensions have to be defined.
This is done by creation of a CSpace class object:

%% space
space = CSpace('TXY');

In this case a Cartesian 3D grid will be constructed with temporal “T”, and
two spatial “X” and “Y” dimensions. Alternative options are:

CSpace argument notes
’T’ 1D e.g. fiber

’TX’ 2D Cartesian e.g. big non-collinear beams
’TXY’ Full 3D simulation e.g. focused beams in

birefringent crystals
’TR’ cylindrical e.g. supercontinuum

in non birefringent medium
’X’ CW beam in 1D

’XY’ CW beams in birefringent media
’R’ cylindrical CW beam e.g. self-focusing

11

PathToHussarDirectory/work/tutorial/T6_NOPA_PumpUV.m
PathToHussarDirectory/work/tutorial/T6_NOPA_PumpUV.m
PathToHussarDirectory/
/../..

The Temporal and spatial window sizes and the number of T,X, Y grid
points can be set with setDimension method of CSpace:

fTimeSpan = 4e−12; % time window span in SI units [s]
iTimeSize = 2ˆ7; % number of time grid points
space.setDimension('T', fTimeSpan, iTimeSize);
space.setDimension('X', 0.3e−3, 2ˆ5);
space.setDimension('Y', 0.3e−3, 2ˆ5);

Here a grid with size of 27× 25× 25 = 128× 32× 32 = 131072 points is created.
The temporal window spans 2 ps, and spatial window is 300 µm in both X and
Y directions. The grid size doesn’t have to be a power of 2 it, however, has to
be even. Also the X and Y direction sizes and points number don’t have to be
equal.

The envelopes of electric field related to particular beams are represented by
CEnvelope class objects:

%% envelopes
% signal
fSignalWavelength = 1030e−9;
AS = CEnvelope('A S', space, fSignalWavelength);

The first argument is a label for the envelope which will be displayed by Listeners
on various plots. This particular envelope represents the signal (AS). The space
and the envelopes reference wavelength (corresponding to reference frequency
ωS) is a mandatory argument.

The electric field inside the envelope can be arbitrary (user data) or com-
posed from “Pulse Functions” with CPulseComposer instance:

composer = CPulseComposer(space);
composer.append('T', CGaussPF('FWHM', 200e−15));
composer.append('X', CGaussPF('Waist', 25e−6));
composer.append('Y', CGaussPF('Waist', 25e−6));

fSignalEnergy = 5.0000e−11; % SI [J]
AS.put(fSignalEnergy, composer);

The selected “Pulse Function” has to be passed to the CPulseComposer with
the append method (or append2D for two dimensional functions). The append

method takes the dimension designation string (one of: ’T’, ’X’, ’Y’, ’R’ or
their mix like ’XY’ for append2D) as the first argument. The second argument
is the object of a class derived from CPulseFunction class. Currently available
“Pulse Functions” are:

12

Gaussian CGaussPF

super Gaussian space or time profile CSuperGaussPF

super Gaussian spectrum CSuperGaussSpectrumPF

Hermite-Gauss profile CHermiteGaussPF

shape from user provided function CArbitraryPF

hyperbolic secant space or time profile CSecantPF

hyperbolic secant spectrum CSecantSpectrumPF

sinc temporal or spatial profile CSincPF

cylindrical (2D) super Gaussian profile C2DSuperGaussPF

Laguerre-Gaussian beam profile CLaguerreGaussPF
For each “Pulse Functions” a different parameters defining the distribution

width can be used use help (e.g. help CGaussPF.CGaussPF) to see what are
the possibilities for a particular pulse function. All constants in Hussar are in
basic SI units, thus, composer.append(’T’, CGaussPF(’FWHM’, 200e-15));

appends a Gaussian temporal profile with intensity FWHM of 200·10−15 seconds
(200 fs), while composer.append(’X’, CGaussPF(’Waist’, 25e-6)); appends
a Gaussian spatial profile with 25 · 10−6 meters (25 µm). The signal energy
fSignalEnergy = 5.0000e-11; is 5 · 10−11 J (50 pJ - not a very powerful
NOPA) and the fSignalWavelength = 1030e-9; sets the signal wavelength to
1030 nm.

The final 1,2 or 3D envelope is constructed by product of the selected pulse
functions for all used dimensions. This is done by use of the put method of
CEnvelope.

Apart of the Signal envelope the Pump and idler envelopes have to be de-
fined.

%pump
fPumpWavelength = 347e−9;
AP = CEnvelope('A P', space, fPumpWavelength);

composer = CPulseComposer(space);
composer.append('T', CGaussPF('FWHM', 200e−15));
composer.append('X', CGaussPF('Waist', 25e−6));
composer.append('Y', CGaussPF('Waist', 25e−6));

fPumpEnergy = 6e−9; % = 6 nJ
AP.put(fPumpEnergy, composer);

%idler
fIdlerWavelength = 1/(1/fPumpWavelength − 1/fSignalWavelength);
AI = CEnvelope('A I', space, fIdlerWavelength);

There is no energy in the idler beam initially, thus, pulse composition is not
required here.

The envelopes have to be grouped into a vector. For the case of three en-
velope interactions (SFG/DFG/OPA) the third envelope in the envelope vector
has to have the shortest wavelength.

13

A(1) = AS;
A(2) = AI;
A(3) = AP;

The envelopes are constructed in vacuum. To transfer them into the non-
linear material a material manager (CMaterialManager) for both materials is
required. Here the manager for vacuum is prepared.

%% materials
%start in vacuum
vacuum = CVacuum();
mmVacuum = CMaterialManager(vacuum, 0);

The material manager constructor accepts an instance of material class (de-
rived from CMaterial) in this case CVacuum. other possibilities currently avail-
able are:

BBO CBBO()

BiBO CBiBO()

KDP CKDP()

KTP CKTP()

LBO CLBO()

YVO4 CYVO4()

ZnSe CZnSe()

HgGa2S4 CHgGa2S4()

LiNbO3 CLiNbO3()

CaF2 CCaF2()

Calcite CCalcite()

Sapphire CSapphire()

Diamond CDiamond()

FusedSilica CFussedSilica()

Quartz CQuartz()

Material with dispersion Taylor series CFiberFromTaylor()

Material from a dispersion curve CFiberFromBeta2()
The second argument of CMaterialManager constructor is the thickness of

the material, we don’t intend to use this particular manager for propagation,
but for transfer between media only. Thus the thickness is irrelevant and is set
to 0 m here. For birefringent media the constructor of the material manager
accepts also the values of angles (θ and for biaxial materials also ϕ) between
the simulation axis and the optical axis of the crystal.

%nonlinear medium
m = CBBO();
fCrystalThickness = 1.5e−3;

The nonlinear propagation will be performed in a 1.5 mm BBO crystal. Five
precalculated NOPA configurations are presented here and one can be chosen
for simulation. These are the two configurations where the pump walk-off is
compensated with either signal or idler beam direction, two configurations with

14

1◦ and 0.5◦ non-colinearity angle and a colinear case. The angles with respect
to the optical axis are given.

%% fully walk−off signal compensated
% fThetaPump = 33.18*pi/180;
% fThetaIdl = 31.37*pi/180;
% fThetaSig = 37.35*pi/180;

%% fully walk−off idler compensated
% fThetaPump = 33.18*pi/180;
% fThetaIdl = 35.03*pi/180;
% fThetaSig = 28.98*pi/180;

%% non−collinearity = 1 deg
% fThetaPump = 32.39*pi/180;
% fThetaIdl = 31*pi/180;
% fThetaSig = 34.58*pi/180;

%% non−collinearity = 0.5 deg
% fThetaPump = 32.2*pi/180;
% fThetaIdl = 31.92*pi/180;
% fThetaSig = 32.65*pi/180;

%% colinear
fThetaPump = 32.16*pi/180;
fThetaIdl = 32.16*pi/180;
fThetaSig = 32.16*pi/180;

In this model we want to assure that the pulses meet in the center of the
crystal and that’s where the beams have their focuses. This is not necessarily
the most optimal configuration and an optimization of parameters should in
practice be performed. Anyway the group velocities, walk-off angles and the
refractive index in BBO have to be calculated:

%% initial pulses temporal and spatial separation (cross the pulses in
% the center of the medium)
% group velocity mismatch
[fSignalGroupVelocity] = m.groupVelocity(fSignalWavelength, fThetaSig);
[˜, fPumpGroupVelocity] = m.groupVelocity(fPumpWavelength, fThetaPump);
GVM = (1/fSignalGroupVelocity − 1/fPumpGroupVelocity); % s/m

The CBBO class derived from CMaterial provides several useful methods.
The groupVelocity provides the values of group velocity (for the ordinary and
extraordinary rays - first and second output argument respectively) at a given
wavelength and propagation angle. For biaxial crystals the values for ’slow’
and ’fast’ ray are provided and the method requires additionally the value of ϕ
angle.

Now, knowing the value of group velocity mismatch (GVM) the pump can
be delayed by τ = −d GVM

2 so that it will meet in half the crystal thickness (d2)
with the signal pulse. This can be done by addition of a spectral phase to the
pulse as:

A(t− τ) = F−1
T

{
FT {A(t)} eiωτ

}
.

15

The addSpectralPhase method of CEnvelope permits addition of arbitrary
spectral phase approximated by a Taylor series. A vector of Taylor series coef-
ficients has to be passed as an argument to addSpectralPhase.

AP.addSpectralPhase([0 0.5*GVM*fCrystalThickness]); % delay

Another useful method of CMaterial is getWalkOffAngles, it provides the
values of walk-off angles. Together with the non-collinearity angle in can be
used for calculating the required spatial shift of the pump beam:

% walk−off and non−collinearity
[fWalkOffAngleE] = m.getWalkOffAngles(fPumpWavelength, fThetaPump);
fAlpha = −(fThetaPump−fThetaSig); % non−collinearity angle
fPumpXShift = −0.5* fCrystalThickness * (tan(fWalkOffAngleE)−tan(fAlpha));

AP.shiftInSpace('X', fPumpXShift);

The spatial shift is performed with the shiftInSpace method.
A pulse envelope created with the standard pulse functions with the pulse

composer has no spatial or temporal phase - in other words it represents the
envelope of a pulse in the beam focus. To obtain a divergent or convergent beam
a forward or backward propagation in vacuum can be performed. Here we want
to obtain the pump and signal beam focuses in the center of the crystal, we
thus have to perform a back propagation by the distance equal to the half of the
crystal thickness multiplied by the refractive index. The refractive index can be
obtained by the refractiveIndex method of CBBO class.

%% back propagation
% get the flat pulse front in the center of the crystal
n = m.refractiveIndex(fSignalWavelength, fThetaSig);
fBackPropagateLength = 0.5*fCrystalThickness * n ;

A different back propagation distance for pump and signal beams would be
more appropriate (as the refractive indexes for the two beams differ slightly),
we approximate it here with the same distance.

The back propagation for the pump and signal beam is now performed:

for it = [1, 3] % only the signal and the pump
Ai = A(it);

A CMaterialManager holding the material (vacuum) an its thickness is required.

mm = CMaterialManager(vacuum, fBackPropagateLength);

The CPropagationManager class holds the material and the envelope informa-
tion. The information on the polarization (’o’ ordinary, ’e’ extraordinary, ’s’
slow, ’f’ fast) of the envelope is also provided here (for non birefringent media
it should always be ’o’).

16

pm = CPropagationManager(mm, Ai, 'o'); % ordinary polarization

A derivative provider (where the derivative refers to the right hand side of
the UPPE) objects are used for selection of the modeled processes. A general
CProcessContainer can be used for this purpose. Objects representing different
processes can than be added to the process container (see the “Propagation”
tutorial). For special cases of back propagation and sum frequency generation
optimized derivative providers can be used. The CDP1EnvBack is a derivative
provider for a single envelope (1Env) back propagation.

dp = CDP1EnvBack(pm); % single envelope propagation

The solution method is also represented by an object. The following methods
are now available:

methods name build in error estimation order
Exponential Euler method - 1

Runge-Kutta 4 method - 4
Runge-Kutta 45 method
’Fehlberg’, ’Cash-Karp’, + 4

’Dormand-Prince’ (default)
Integrating Factor Runge-Kutta

45 method ’Fehlberg’, ’Cash-Karp’, + 4
’Dormand-Prince’ (default)

For nonlinear propagation the Integrating Factor Runge-Kutta 45 method
is the one to start with. The Runge-Kutta 45 method should also perform well
in most problems. The Exponential Euler method is also a good method for
solving UPPE like problems, it is however, a 1 order method thus, reduction in
step sizes might be required to keep the accuracy.

The linear problems can be solved in a single Fourier space step. The very
idea of Runge-Kutta methods is subdivision of the step distance into substeps.
The Exponential Euler method is best choice for linear problems as no subdivi-
sion is performed here.

ee = CExpEuler(dp, 1); % solution method Exponential Euler method

The step size selection strategy is required for calculation of the solution.
In this case a single step should be performed a CConstantStepSizeStepper

enable division of the propagation distance into a number of equal steps (in this
case 1.

stepper = CConstantStepSizeStepper(ee, 1);

At this point solution of the model (back propagation) could be performed, the
user would, however, have no access to the data during solution. To plot the en-
ergy, temporal/spatial/spectral profile evolution, phase etc. the Listener object
have to be provided to the stepper object. After every step of model solution

17

each listener’s Listen method is called and the current envelope vector, posi-
tion within the medium and the step size are passed to the method. Therefore,
various parameters can be extracted by the Listener object and saved or viewed
on a plot.

The CListenerFigure has to be used for arrangement of various plots
produced by the listener objects supplied with Hussar. Apart of the Mat-
lab figure handle (second argument) the plot arrangement definition (same as
for the standard Matlab subplot function) is supplied as an argument to the
CListenerFigure constructor:

%% Listeners
caColor = {'r', 'g', 'b'}; % colors for the envelopes

hFig = figure('Position', [100+(it−1)*260, 100, 500, 800]);
lfigure = CListenerFigure([3 1], hFig);

Three vertical plot slots are created here on the hFig.
The energy listener can be used for plotting the energy during the propaga-

tion. The color of the line for each of the envelopes (one in this case) can be
provided in the constructor.

hEnergyListener = CEnergyListener({caColor{it}});

The location of the energy listener plot on the figure has to be defined. The
second argument to the placeOn function corresponds to the third argument of
the Matlab subplot function.

hEnergyListener.placeOn(lfigure, [1]);

Finally the listener has to be added to the stepper’s listeners list:

stepper.addListener(hEnergyListener);

The C3DVisualizeListener listeners is used for pulse visualization in the 3D
space. It will be displayed on in the two bottom slots of the lfigure (note the
[2 3] argument to placeOn method - in correspondance to standard Matlab
subplot function behavior). The C3DVisualizeListener can be used to dis-
play the 3D visualization of the pulse from multiple perspectives in this case only
one perspective will be used thus the last additional argument of the placeOn

function is 1.

visual = C3DVisualizeListener({caColor{it}});
visual.placeOn(lfigure, [2 3], 1);
stepper.addListener(visual);

Finally the back propagation problem can be solved:

%% solve!

18

Ai = stepper.solve(Ai);
end

By default the pulses propagate along the models z axis. Before the NOPA
process simulation this has to be changed. This is done by setting the enve-
lope propagation direction with respect to the crystals optical axis with the
changePropagationDirection method:

%% the direction of the Signal and idler beams with
% respect to the crystal axis
AS.changePropagationDirection(fThetaSig, 0);
AI.changePropagationDirection(fThetaIdl, 0);
%% from vacuum into the crystal
mm = CMaterialManager(m, fCrystalThickness, fThetaPump);

By defining the CMaterialManager with the fThetaPump we set the models z
axis to make the fThetaPump angle with the crystal’s optical axis. Therefore
the pump beam will propagate co-linearly with the model’s axis. The signal and
idler beam will propagate at different angles defined with changePropagationDirection.

Currently the pulse rotation through the changePropagationDirection

method is an approximated one. It is, however a good approximation within
the [−5◦, 5◦] angle range. The more exact way of rotation will come with the
next Hussar version.

The envelopes have to be transferred into the material from the vacuum this
is done by CInterface object (taking the material managers of the two media

19

- vacuum and BBO) and its transfer method:

interface = CInterface(mmVacuum, mm);
A = interface.transfer(A);

Again for propagation we need a propagation manager which aparto of the
material manager and envelopes will store the information on the polarization
’s of the envelopes.

%% nonlinear propagation

pm = CPropagationManager(mm, A, 'ooe'); % define the polarization
% of envelopes

This is a Type I NOPA process with ordinary signal and idler rays ’oo’ and
extraordinary pump ’e’. The order of elements in the polarization argument
’ooe’ must correspond to the ordering of the envelopes’ vector A.

A derivative provider optimized for three envelope’s propagation is required:

dp = CDP3Env(pm); % use 3 envelopes

The sum/difference-frequency generation and optical parametric amplification
all are in fact the same process with different initial conditions. To enable the
OPA process the addSFG method of the derivative provider has to be called with
the effective nonlinear coefficient (deff = 2pmV = 2 · 10−12 m

V as en argument:

dp.addSFG(2.01e−12); % add sum frequency generation

The self/cross-phase modulation together with self-steepening can be also added
through addPhaseModulation method taking the values of nonlinear refractive

indexes n2 [m
2

W] for the three beams. This is skipped here.

% dp.addPhaseModulation(n2S, n2I, n2P);

The solution method CRK45Method or CIFRK45Method can preferably be used
for solution.

% Runge−Kutta 45 method
method = CRK45Method(dp, space, length(A), 'Dormand−Prince');
% integrating factor Runge−Kutta 45 method
% method = CIFRK45Method(dp, space, length(A), 'Dormand−Prince');

An automatic step size selection based on the embedded Runge-Kutta method
error estimation is represented by CHairerStepper object.

stepper = CHairerStepper(method);

The stepper absolute and relative accuracy as well as the minimum step size
can be set with the setAccuracy method.

20

fAccuracy = 1e−6;
fMaxAmplitude = max(max(max(AP.m mGrid)));
stepper.setAccuracy(fAccuracy, 0.1*fAccuracy*fMaxAmplitude, fPumpWavelength);

Here the absolute accuracy has been selected in relation to the pump beam maxi-
mum envelopes amplitude and the minimum step size equal to pump wavelength
is used.

To view the calculation results during the propagation again a set of listeners
has to be defined:

%% Listeners

hFig2 = figure('Position', [100, 100, 1400, 800], 'Color', ...
[0.8, 0.8 ,1.0]);

set(hFig2,'Renderer','zbuffer');
lfigure2 = CListenerFigure([2 3], hFig2);

bpl1 = CProfileListener(1);
bpl2 = CProfileListener(2);
bpl3 = CProfileListener(3);
bpl1.placeOn(lfigure2, 1, 1);
bpl1.placeOn(lfigure2, 4, 2);
bpl2.placeOn(lfigure2, 2, 1);
bpl2.placeOn(lfigure2, 5, 2);
bpl3.placeOn(lfigure2, 3, 1);
bpl3.placeOn(lfigure2, 6, 2);
stepper.addListener(bpl1);
stepper.addListener(bpl2);
stepper.addListener(bpl3);

Beam profile listeners CProfileListener provide two axes - one with the profile
in the X − Y space and one spectral in the KX − KY space. Therefore, for
each beam profile listener the placeOn method has to be called twice. Single
CProfileListener for each envelope (identified by the envelope index passed
through the constructor (e.g. CProfileListener(2))

hFig = figure('Position', [100, 100, 1400, 800], 'Color', ...
[0.8, 0.8 ,1.0]);

set(hFig,'Renderer','zbuffer');
lfigure = CListenerFigure([2 3], hFig);

The energy calculation within the medium requires information on the refractive
index for each envelope, here an approximate value (1.6) is given, setting the
plot type to @semilogy will make the Y axis logarithmic (other possible plot
types are @loglog, @semilogx and the default: @plot).

hEnergyListener = CEnergyListener(caColor);
hEnergyListener.setRefractiveIndex(1.6*[1 1 1]); % more or less
hEnergyListener.placeOn(lfigure, [6]);
hEnergyListener.setPlotType(@semilogy);
stepper.addListener(hEnergyListener);

21

Another energy plot this time presenting only signal beam (setVisible) and
with pico Joules on the ’Energy’ axis is prepared (the second ’Position’ axis
units can also be changed from default ’mm’ to for example ’um’).

hEnergyListener2 = CEnergyListener(caColor);
hEnergyListener2.setRefractiveIndex(1.6*[1 1 1]); % more or less
hEnergyListener2.placeOn(lfigure, [3]);
hEnergyListener2.setAxesUnits('Energy', 'pJ');
hEnergyListener2.setVisible([true false false]);
stepper.addListener(hEnergyListener2);

The spectra of the three pulses can be displayed, by default the x axis is an-
gular frequency detuning from the reference frequency (’Angular Frequency’)
this can be changed by passing one of the following as the additional listener’s
constructor argument (’Wavelength’, ’Frequency’, ’Real Frequency’, ’Real An-
gular Frequency’). By default the spectra are normalized this can be changed
by calling the normalize(’off’) method:

specL = CSpectrumListener(caColor);
specL.placeOn(lfigure, 4);
stepper.addListener(specL);

The pulse time profile can be piloted with CTimeProfileListener

tpl = CTimeProfileListener(caColor);
tpl.placeOn(lfigure, 5);
stepper.addListener(tpl);

visual = C3DVisualizeListener(caColor);
visual.placeOn(lfigure, 1, 1);
stepper.addListener(visual);

CTrailListener can be used for plotting the pulses in the 3D XYZ space.

visual2 = CTrailListener(caColor); %, 'SHG (BBO)', gm);
visual2.placeOn(lfigure, 2, 1);
visual2.setGradientSteps([0.1 0.5]);
visual2.setAlpha(0.2);
visual2.setView(0,90);
stepper.addListener(visual2);

Finally the propagation problem can be solved:

%% solve
A = stepper.solve(A);

22

Afterwards the envelopes have to be transferred back to vacuum:

interface = CInterface(mm, mmVacuum);
A = interface.transfer(A);

Now the output characteristics like energy can be extracted:

disp(['output energy: ' num2str(1e12* AS.energy()) ' pJ']);

Apparently for these particular conditions the co-linear configuration gives the
highest output energy.

23

3.2 1D Propagation

A simple propagation of a large beam or within a fiber is described in this
tutorial the corresponding script is located in: PathToHussarDirectory/work/
tutorial/T4_Propagation.m.

We begin by including Hussar:

run('../../includeAll');

A single dimensional ’T’ space is required.

space = CSpace('T');
space.setDimension('T', 1e−12, 2ˆ8);
% space.setDimension('T', 1.8e−12, 2ˆ10);

A domain spanning 1 ps and containing 256 points is used, however, as the
user will see on the logarithmic spectrum and temporal profiles this will not
be enough (as during the spectrum broadening the electric field will exit the
simulation window, end enter it again on the other side). Thus finally the 1.8
ps domain of 1024 points will become a better choice.

fDuration = 30e−15;
composer = CPulseComposer(space);
composer.append('T', CGaussPF('FWHM', fDuration));

A 30 fs Gaussian pulse is declared with pulse composer.

fWL = 800e−9;
fEnergy = 10e−9;
fBeamWaist = 10e−6;
A = CEnvelope('A', space, fWL);
A.put(fEnergy, composer, fBeamWaist, fBeamWaist);

The pulse is construed as the pulse composer is passed to the put method of
the CEnvelope (the reference wavelength fWL of 800 nm and energy of 10 nJ is
used). As the model is one-dimensional to calculate the electric field the size
of the beam (assumed Gaussian) in the X and Y directions has to be provided.
This is done by two additional arguments to the put method. The beam size
(presumably the fiber core radius) is 10 µm.

The 10 mm of fused silica will be selected as the material, although, for fibers
special materials that use dispersion Taylor expansion can be used instead.

%% material
m = CFusedSilica();
fThickness = 10e−3; % 10 mm
mm = CMaterialManager(m, fThickness);

Transfer into fused silica from vacuum where the pulse envelope have been
defined is required and is done through interface object.

24

PathToHussarDirectory/work/tutorial/T4_Propagation.m
PathToHussarDirectory/work/tutorial/T4_Propagation.m

%% from vacuume into fused silica
hVac = CMaterialManager(CVacuum(), 0);
interface = CInterface(hVac, mm);
A = interface.transfer(A); % the electric field gets
% modified: E 2 = sqrt(n1/n2) E 1

Propagation manager will hold the material, envelope and the polarization in-
formation. For non-birefringent media should always be ’o’.

%% get ready for propagation
sPolarization = 'o';
bUseMaterialFiles = true;
pm = CPropagationManager(mm, A, sPolarization, bUseMaterialFiles);

In this tutorial a derivative provider is replaced by the CProcessContainer.

% dp = CDP1Env(pm);
dp = CProcessContainer(pm);

Various processes with different options can be added to the CProcessContainer:

%processes:
% dp.addProcess(CLinearEffects('SpatialEffects', 'off'));
dp.addProcess(CLinearEffects());

The linear effects are represented by CLinearEffects() class. The self-phase
modulation (together with intrinsic self-steepening effect) is represented by SPM

class. The self-steepening effect can be switche off by passing the ’SelfSteepening’,
’off’, ’ConstantRefractiveIndex’, ’on’ options to the SPM constructor.

n2 = 3e−20; % mˆ2/W
% dp.addProcess(SPM(n2, 'SelfSteepening', 'off', ...
% 'ConstantRefractiveIndex', 'on'));
dp.addProcess(SPM(n2));
% help SPM/SPM

Other possible processes currently available are:
LinearEffects dispersion difraction walk-off

LinearAbsorption linear absorption
SPM self-phase modulation
XPM cross-phase modulation

DFWM degenerate four-wave mixing
SRS stimulated Raman scattering
THG direct third harmonic generation

HOKE higher order Kerr effects
MPA multiphoton absorption
PICI Photoionization and carier interaction

(Multiphoton ionization or
Keldysh model + Drude model)

25

The second harmonic and sum/difference frequency generation can be used
via optimized 2-3 envelope derivative providers CDP2Env and CDP3Env (described
in the NOPA tutorial).

In this case an Integrating Factor Runge-Kutta 45 solution method is the
right choice. As can be verified by the user, when pure RK45 method is used
artifacts on the frequency window edges appear.

%% RungeKutta 45 method
method = CRK45Method(dp, space, length(A), 'Dormand−Prince');
%%Integrating Factor Runge Kutta 45 method
% method = CIFRK45Method(dp, space, length(A), 'Dormand−Prince');
stepper = CHairerStepper(method); % does step size adaptation

fMaxAmplitude = max(max(max(abs(A(1).m mGrid))));
fAccuracy = 1e−6;
stepper.setAccuracy(fAccuracy, 0.1*fAccuracy*fMaxAmplitude, fWL);

an alternative Exponential Euler method with Richardson Extrapolation step
selection scheme is an other - a little slower and less accurate option.

%% alternative Exponential Euler method
% method = CExpEuler(dp, length(A));
% stepper = CRichardsonExtrapolationStepper(method);
% fGoalLocalError = 1e−4;
% fMinStepSize = fWL;
% stepper.setAccuracy(fGoalLocalError, fMinStepSize);

Uncomment following lines to enable data plotting (see NOPA tutorial for details
on listeners usage). Energy, spectrum, time profile and step size are plotted on
the figure represented by hFig.

%% Listeners
% hFig = figure('Position', [100, 100, 1200, 800], 'Color', [0.8, 0.8 ,1.0]);
% lfigure = CListenerFigure([2 2], hFig);
%
% caColors = {'r'};
% hEnergyListener = CEnergyListener(caColors);
% hEnergyListener.setRefractiveIndex(m.refractiveIndex(fWL));
% hEnergyListener.placeOn(lfigure, 1);
% stepper.addListener(hEnergyListener);
%
% specL = CSpectrumListener(caColors);
% % specL.setPlotType(@semilogy);
% specL.placeOn(lfigure, 2);
% stepper.addListener(specL);
%
% tpl = CTimeProfileListener(caColors);
% % tpl.setPlotType(@semilogy);
% tpl.placeOn(lfigure, 3);
% stepper.addListener(tpl);
%
% ssl = CStepSizeListener();
% ssl.placeOn(lfigure, 4);

26

% stepper.addListener(ssl);

Finally solve the problem and transfer the electric field back to the vacuum.

A = stepper.solve(A);

interface = CInterface(mm, CMaterialManager(CVacuum(), 0));
A = interface.transfer(A);

27

Bibliography

[1] M. Kolesik, J. V. Moloney, and M. Mlejnek. Unidirectional Optical Pulse
Propagation Equation. Physical Review Letters, 89(28), December 2002.

28

	Introduction
	License
	About Hussar
	Requirements
	Installation
	Citing

	List of examples
	Tutorials
	Examples
	Tests

	Tutorials walk-through
	NOPA example
	1D Propagation

